If it's not what You are looking for type in the equation solver your own equation and let us solve it.
36t^2-48-12t=0
a = 36; b = -12; c = -48;
Δ = b2-4ac
Δ = -122-4·36·(-48)
Δ = 7056
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{7056}=84$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-12)-84}{2*36}=\frac{-72}{72} =-1 $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-12)+84}{2*36}=\frac{96}{72} =1+1/3 $
| -13+b=-30 | | 3t4=620 | | -7+e=15 | | 5s-28+8s=180 | | 27–3e=18 | | 4x^2+2x=135 | | 2q-q-10=20 | | -f/3=-5 | | -6x-13=-8x+1 | | 3x^2=59x | | 18+6p=84 | | v-1/3=4/3 | | 10z+11=4z-43 | | 2a+1=9a-6 | | 5h+9h=28 | | 6y-46=5y-30 | | 2y+11=7y+51 | | x^2(x^4+2x^2+243)=0 | | -7+g=-11 | | 2u=10u-88 | | 75y=125 | | 2x+3=6-5x | | -7+g=11 | | 12+0.75n=24 | | (X÷8)-3=x÷5 | | -3+r=9 | | (3x+5)+x+75=180 | | x^2(x^4-2x^2-243)=0 | | t+13=8t-8 | | f-1/9=5/9 | | 3(2x-5)-9=-4x+6 | | 2n+6-8n=33-11n+13 |